POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Product Quality Planning (APQP)

Course

Field of study Year/Semester

Management and Production Engineering 1/2

Area of study (specialization) Profile of study

Production systems general academic
Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements

full-time elective

Number

of hours

Lecture Laboratory classes Other (e.g. online)

15

Tutorials Projects/seminars

15

Number of credit points

2

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

Dr. Magdalena DIERING

email: Magdalena.Diering@put.poznan.pl

ph. +48 616652738

Faculty of Mechanical Engineering

Piotrowo 3, 60-965 Poznan, Poland

Prerequisites

Knowledge of issues in the field of quality management, knowledge of the basics of project management. Student has IT skills - knowledge of MS Office. The student has the skills of logical thinking, the use of information obtained from the library and the Internet. Social competences - the student understands the need to learn and acquire new knowledge; can work in a team; recognizes the possibilities of continuous improvement in various areas of life, including the activities of organizations, with particular emphasis on manufacturing enterprises.

Course objective

To familiarize the student with the methodology of advanced product quality planning - APQP.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

Student knows the stages of the APQP methodology and PPAP actions. The student knows the process FMEA method. The student knows what a control plan is.

Skills

The student knows how to develop APQP project documentation - 18 elements of PPAP.

The student knows how to develop a "quality trilogy" for a selected product and process - Process Flow Chart, pFMEA, Control Plan.

Social competences

The student is aware of the effects of engineering activities in both technical and non-technical areas. The student is aware of the effects of decisions and responsibility for decisions.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formulation assessment:

Lecture – Evaluation based on answers to questions about the material discussed in the previous lectures.

Laboratory – Evaluation based on assessment of current progress of tasks

Summary assessment:

Lecture – Examination on the basis of a colloquium consisting of 8 general questions (credit in the case of a correct answer to at least 4 questions (each question for 1 point): 3 points and less – Not credited, 4 - Satisfactory, 5 – Satisfactory plus, 6 - Good, 7 – Good plus and 8 – Very good. Credit – during the last lecture (at the end of the semester). Discussion the results of the exam.

Laboratory exercises: performing problem tasks, solving tasks, discussion, working in a team.

Programme content

Lecture:

- 1. AIAG Core Tools guidebooks.
- 2. Stages of APQP methodology.
- 3. APQP trilogy (Process Flow-Chart, FMEA and CP).
- 4. Part Approval Process (PPAP).
- 5. APQP and PPAP documentation.
- 6. Practical guidelines for conducting APQP projects in the company.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Laboratory:

Development of selected elements of APQP project documentation (APQP trilogy).

Teaching methods

Lecture: multimedia presentation illustrated with examples given on the board, discussion.

Laboratory exercises: performing problem tasks, solving tasks, discussion, working in a team.

Bibliography

Basic

- 1. Advanced Product Quality Planning And Control Plan, 2nd ed., Reference manual, AIAG-Work Group, Daimler Chrysler Corporation, Ford Motor Company, General Motors Corporation, 2008.
- 2. Measurement System Analysis, 4th ed., Reference manual, AIAG-Work Group, Daimler Chrysler Corporation, Ford Motor Company, General Motors Corporation, 2010.

Additional

- 1. AIAG & VDA FMEA Handbook, 2019.
- 2. Production Part Approval Process (PPAP). Reference Manual. 4th Editon. AIAG 2006.
- 3. Adam Hamrol, Strategie i praktyki sprawnego działania, Wyd. PWN, Warszawa 2015.

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for laboratory	20	1,0
classes/tutorials, preparation for tests/exam) ¹		

3

¹ delete or add other activities as appropriate